Design of Robust Adaptive Beamforming Algorithms Based on Low-Rank and Cross-Correlation Techniques

نویسندگان

  • Hang Ruan
  • Rodrigo C. de Lamare
چکیده

This work presents cost-effective low-rank techniques for designing robust adaptive beamforming (RAB) algorithms. The proposed algorithms are based on the exploitation of the cross-correlation between the array observation data and the output of the beamformer. Firstly, we construct a general linear equation considered in large dimensions whose solution yields the steering vector mismatch. Then, we employ the idea of the full orthogonalization method (FOM), an orthogonal Krylov subspace based method, to iteratively estimate the steering vector mismatch in a reduced-dimensional subspace, resulting in the proposed orthogonal Krylov subspace projection mismatch estimation (OKSPME) method. We also devise adaptive algorithms based on stochastic gradient (SG) and conjugate gradient (CG) techniques to update the beamforming weights with low complexity and avoid any costly matrix inversion. The main advantages of the proposed low-rank and mismatch estimation techniques are their cost-effectiveness when dealing with high dimension subspaces or large sensor arrays. Simulations results show excellent performance in terms of the output signal-tointerference-plus-noise ratio (SINR) of the beamformer among all the compared RAB methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Rank Reduction Algorithm with Iterative Parameter Optimization and Vector Perturbation

In dynamic propagation environments, beamforming algorithms may suffer from strong interference, steering vector mismatches, a low convergence speed and a high computational complexity. Reduced-rank signal processing techniques provide a way to address the problems mentioned above. This paper presents a low-complexity robust data-dependent dimensionality reduction based on an iterative optimiza...

متن کامل

Low-Complexity Robust Data-Adaptive Dimensionality Reduction Based on Joint Iterative Optimization of Parameters

This paper presents a low-complexity robust data-dependent dimensionality reduction based on a modified joint iterative optimization (MJIO) algorithm for reduced-rank beamforming and steering vector estimation. The proposed robust optimization procedure jointly adjusts the parameters of a rank-reduction matrix and an adaptive beamformer. The optimized rank-reduction matrix projects the received...

متن کامل

Robust Low-Rank LCMV Beamforming Algorithms Based on Joint Iterative Optimization Strategies

This chapter presents reduced-rank linearly constrained minimum variance (LCMV) algorithms based on the concept of joint iterative optimization of parameters. The proposed reduced-rank scheme is based on a constrained robust joint iterative optimization (RJIO) of parameters according to the minimum variance criterion. The robust optimization procedure adjusts the parameters of a rank-reduction ...

متن کامل

Robust Reduced-Rank Adaptive LCMV Beamforming Algorithms Based on Joint Iterative Optimization of Parameters

This chapter presents reduced-rank linearly constrained minimum variance (LCMV) algorithms based on the concept of joint iterative optimization of parameters. The proposed reduced-rank scheme is based on a constrained robust joint iterative optimization (RJIO) of parameters according to the minimum variance criterion. The robust optimization procedure adjusts the parameters of a rank-reduction ...

متن کامل

Study of Efficient Robust Adaptive Beamforming Algorithms Based on Shrinkage Techniques

This paper proposes low-complexity robust adaptive beamforming (RAB) techniques based on shrinkage methods. We firstly briefly review a Low-Complexity Shrinkage-Based Mismatch Estimation (LOCSME) batch algorithm to estimate the desired signal steering vector mismatch, in which the interference-plus-noise covariance (INC) matrix is also estimated with a recursive matrix shrinkage method. Then we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1606.01313  شماره 

صفحات  -

تاریخ انتشار 2016